Concatenate datasets to a single array store¶
In the previous notebooks, we’ve seen how to incrementally create a collection of scRNA-seq datasets and train models on it.
Sometimes we want to concatenate all datasets into one big array to speed up ad-hoc queries for slices for arbitrary metadata (see this blog post). This is what CELLxGENE does to create Census: a number of .h5ad
files are concatenated to give rise to a single tiledbsoma
array store (CELLxGENE: scRNA-seq).
Note
This notebook shows how lamindb
can be used with tiledbsoma
append mode, also expained in the tiledbsoma documentation.
import lamindb as ln
import pandas as pd
import scanpy as sc
import tiledbsoma.io
from functools import reduce
→ connected lamindb: testuser1/test-scrna
ln.context.uid = "oJN8WmVrxI8m0000"
ln.context.track()
Show code cell output
→ notebook imports: lamindb==0.76.3 pandas==2.2.2 scanpy==1.10.2 tiledbsoma==1.13.1
→ created Transform('oJN8WmVrxI8m0000') & created Run('2024-09-02 13:27:44.592263+00:00')
Query the collection of h5ad
files that we’d like to convert into a single array.
collection = ln.Collection.get(
name="My versioned scRNA-seq collection", version="2"
)
collection.describe()
Show code cell output
Collection(uid='I60Bnk1OD1kNTZl10001', version='2', is_latest=True, name='My versioned scRNA-seq collection', hash='dBJLoG6NFZ8WwlWqnfyFdQ', visibility=1, updated_at='2024-09-02 13:27:09 UTC')
Provenance
.created_by = 'testuser1'
.transform = 'Standardize and append a batch of data'
.run = '2024-09-02 13:26:48 UTC'
.input_of_runs = ["'2024-09-02 13:27:20 UTC'", "'2024-09-02 13:27:37 UTC'"]
Feature sets
'var' = 'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'OR4F29', 'OR4F16', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C'
'obs' = 'donor', 'tissue', 'cell_type', 'assay'
Prepare the AnnData objects¶
We need to prepare theAnnData
objects in the collection to be concatenated into one tiledbsoma.Experiment
. They need to have the same .var
and .obs
columns, .uns
and .obsp
should be removed.
adatas = [artifact.load() for artifact in collection.ordered_artifacts]
Compute the intersetion of all columns. All AnnData
objects should have the same columns in their .obs
, .var
, .raw.var
to be ingested into one tiledbsoma.Experiment
.
obs_columns = reduce(pd.Index.intersection, [adata.obs.columns for adata in adatas])
var_columns = reduce(pd.Index.intersection, [adata.var.columns for adata in adatas])
var_raw_columns = reduce(pd.Index.intersection, [adata.raw.var.columns for adata in adatas])
Prepare the AnnData
objects for concatenation. Prepare id fields, sanitize index
names, intersect columns, drop slots. Here we have to drop .obsp
, .uns
and also columns from the dataframes that are not in the intersections obtained above, otherwise the ingestion will fail. We will need to provide obs
and var
names in ln.integrations.save_tiledbsoma_experiment
, so we create these fileds (obs_id
, var_id
) from the dataframe indices.
for i, adata in enumerate(adatas):
del adata.obsp
del adata.uns
adata.obs = adata.obs.filter(obs_columns)
adata.obs["obs_id"] = adata.obs.index
adata.obs["dataset"] = i
adata.obs.index.name = None
adata.var = adata.var.filter(var_columns)
adata.var["var_id"] = adata.var.index
adata.var.index.name = None
drop_raw_var_columns = adata.raw.var.columns.difference(var_raw_columns)
adata.raw.var.drop(columns=drop_raw_var_columns, inplace=True)
adata.raw.var["var_id"] = adata.raw.var.index
adata.raw.var.index.name = None
Create the array store¶
Ingest the AnnData
objects. This saves the AnnData
objects in one array store, creates Artifact
and saves it. This function also writes current run.uid
to tiledbsoma.Experiment
obs
, under lamin_run_uid
.
If you know tiledbsoma
API, then note, that ln.integrations.save_tiledbsoma_experiment
includes both tiledbsoma.io.register_anndatas
and tiledbsoma.io.from_anndata
.
soma_artifact = ln.integrations.save_tiledbsoma_experiment(
adatas,
description="tiledbsoma experiment",
measurement_name="RNA",
obs_id_name="obs_id",
var_id_name="var_id",
append_obsm_varm=True
)
Show code cell output
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/abc.py:119: FutureWarning: SparseDataset is deprecated and will be removed in late 2024. It has been replaced by the public classes CSRDataset and CSCDataset.
For instance checks, use `isinstance(X, (anndata.experimental.CSRDataset, anndata.experimental.CSCDataset))` instead.
For creation, use `anndata.experimental.sparse_dataset(X)` instead.
return _abc_instancecheck(cls, instance)
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/abc.py:119: FutureWarning: SparseDataset is deprecated and will be removed in late 2024. It has been replaced by the public classes CSRDataset and CSCDataset.
For instance checks, use `isinstance(X, (anndata.experimental.CSRDataset, anndata.experimental.CSCDataset))` instead.
For creation, use `anndata.experimental.sparse_dataset(X)` instead.
return _abc_instancecheck(cls, instance)
Query the array store¶
Open and query the experiment. We can use the registered Artifact
. Here we query obs
from the array store.
with soma_artifact.open() as soma_store:
obs = soma_store["obs"]
var = soma_store["ms"]["RNA"]["var"]
obs_columns_store = obs.schema.names
var_columns_store = var.schema.names
obs_store_df = obs.read().concat().to_pandas()
print(obs_store_df)
Show code cell output
soma_joinid cell_type \
0 0 dendritic cell
1 1 B cell, CD19-positive
2 2 dendritic cell
3 3 B cell, CD19-positive
4 4 effector memory CD4-positive, alpha-beta T cel...
... ... ...
1713 1713 naive thymus-derived CD4-positive, alpha-beta ...
1714 1714 naive thymus-derived CD4-positive, alpha-beta ...
1715 1715 naive thymus-derived CD4-positive, alpha-beta ...
1716 1716 CD8-positive, alpha-beta memory T cell
1717 1717 naive thymus-derived CD4-positive, alpha-beta ...
obs_id dataset lamin_run_uid
0 GCAGGGCTGGATTC-1 0 7h2zZbmfFQyzdWU4xa3e
1 CTTTAGTGGTTACG-6 0 7h2zZbmfFQyzdWU4xa3e
2 TGACTGGAACCATG-7 0 7h2zZbmfFQyzdWU4xa3e
3 TCAATCACCCTTCG-8 0 7h2zZbmfFQyzdWU4xa3e
4 CGTTATACAGTACC-8 0 7h2zZbmfFQyzdWU4xa3e
... ... ... ...
1713 Pan_T7991594_CTCACACTCCAGGGCT 1 7h2zZbmfFQyzdWU4xa3e
1714 Pan_T7980358_CGAGCACAGAAGATTC 1 7h2zZbmfFQyzdWU4xa3e
1715 CZINY-0064_AGACCATCACGCTGCA 1 7h2zZbmfFQyzdWU4xa3e
1716 CZINY-0050_TCGATTTAGATGTTGA 1 7h2zZbmfFQyzdWU4xa3e
1717 CZINY-0064_AGTGTTGTCCGAGCTG 1 7h2zZbmfFQyzdWU4xa3e
[1718 rows x 5 columns]
Append AnnData
to the array store¶
Prepare a new AnnData
object to be appended to the store.
adata = ln.core.datasets.anndata_with_obs()
adata.obs_names_make_unique()
adata.var_names_make_unique()
adata.obs["obs_id"] = adata.obs.index
adata.var["var_id"] = adata.var.index
adata.obs["dataset"] = obs_store_df["dataset"].max()
obs_columns_same = [obs_col for obs_col in adata.obs.columns if obs_col in obs_columns_store]
adata.obs = adata.obs[obs_columns_same]
var_columns_same = [var_col for var_col in adata.var.columns if var_col in var_columns_store]
adata.var = adata.var[var_columns_same]
adata.write_h5ad("adata_to_append.h5ad")
Append the AnnData
object from disk. This also creates a new version of soma_artifact
.
soma_artifact = ln.integrations.save_tiledbsoma_experiment(
["adata_to_append.h5ad"],
revises=soma_artifact,
measurement_name="RNA",
obs_id_name="obs_id",
var_id_name="var_id"
)
Show code cell output
! artifact version None will _update_ the state of folder /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/nCqIkb08iwOsKEnN.tiledbsoma - to _retain_ the old state by duplicating the entire folder, do _not_ pass `revises`
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/abc.py:119: FutureWarning: SparseDataset is deprecated and will be removed in late 2024. It has been replaced by the public classes CSRDataset and CSCDataset.
For instance checks, use `isinstance(X, (anndata.experimental.CSRDataset, anndata.experimental.CSCDataset))` instead.
For creation, use `anndata.experimental.sparse_dataset(X)` instead.
return _abc_instancecheck(cls, instance)
Update the array store¶
Read X
from the store.
with soma_artifact.open() as soma_store: # mode="r" by default
ms_rna = soma_store["ms"]["RNA"]
n_obs = len(soma_store["obs"])
n_var = len(ms_rna["var"])
X = ms_rna["X"]["data"].read().coos((n_obs, n_var)).concat().to_scipy()
Calculate PCA from the queried X
.
pca_array = sc.pp.pca(X, n_comps=2)
soma_artifact
Artifact(uid='nCqIkb08iwOsKEnN0001', is_latest=True, description='tiledbsoma experiment', key='.lamindb/nCqIkb08iwOsKEnN.tiledbsoma', suffix='.tiledbsoma', size=15068509, hash='1zWHgdughEQI1t8Ig1AJQQ', n_objects=173, _hash_type='md5-d', visibility=1, _key_is_virtual=False, created_by_id=1, storage_id=1, transform_id=6, run_id=6, updated_at='2024-09-02 13:27:52 UTC')
Open the array store in write mode and add PCA. When the store is updated, the corresponding artifact also gets updated with a new version.
with soma_artifact.open(mode="w") as soma_store:
tiledbsoma.io.add_matrix_to_collection(
exp=soma_store,
measurement_name="RNA",
collection_name="obsm",
matrix_name="pca",
matrix_data=pca_array
)
Show code cell output
! The hash of the tiledbsoma store has changed, creating a new version of the artifact.
! artifact version None will _update_ the state of folder /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/nCqIkb08iwOsKEnN.tiledbsoma - to _retain_ the old state by duplicating the entire folder, do _not_ pass `revises`
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/abc.py:119: FutureWarning: SparseDataset is deprecated and will be removed in late 2024. It has been replaced by the public classes CSRDataset and CSCDataset.
For instance checks, use `isinstance(X, (anndata.experimental.CSRDataset, anndata.experimental.CSCDataset))` instead.
For creation, use `anndata.experimental.sparse_dataset(X)` instead.
return _abc_instancecheck(cls, instance)
Note that the artifact has been changed.
soma_artifact
Artifact(uid='nCqIkb08iwOsKEnN0002', is_latest=True, description='tiledbsoma experiment', key='.lamindb/nCqIkb08iwOsKEnN.tiledbsoma', suffix='.tiledbsoma', size=15089313, hash='skVIFgqaFfBVQtspHRl0TQ', n_objects=182, _hash_type='md5-d', visibility=1, _key_is_virtual=False, created_by_id=1, storage_id=1, transform_id=6, run_id=6, updated_at='2024-09-02 13:27:53 UTC')